math_fixed64 - [mainnet]
Standard math utilities missing in the Move Language.
use 0x1::error;use 0x1::fixed_point64;use 0x1::math128;
Constants
Abort code on overflow
const EOVERFLOW_EXP: u64 = 1;
Natural log 2 in 32 bit fixed point
const LN2: u256 = 12786308645202655660;
Functions
sqrt
Square root of fixed point number
public fun sqrt(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun sqrt(x: FixedPoint64): FixedPoint64 { let y = x.get_raw_value(); let z = (math128::sqrt(y) << 32 as u256); z = (z + ((y as u256) << 64) / z) >> 1; fixed_point64::create_from_raw_value((z as u128))}
exp
Exponent function with a precission of 9 digits.
public fun exp(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun exp(x: FixedPoint64): FixedPoint64 { let raw_value = (x.get_raw_value() as u256); fixed_point64::create_from_raw_value((exp_raw(raw_value) as u128))}
log2_plus_64
Because log2 is negative for values < 1 we instead return log2(x) + 64 which is positive for all values of x.
public fun log2_plus_64(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun log2_plus_64(x: FixedPoint64): FixedPoint64 { let raw_value = (x.get_raw_value()); math128::log2_64(raw_value)}
ln_plus_32ln2
public fun ln_plus_32ln2(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun ln_plus_32ln2(x: FixedPoint64): FixedPoint64 { let raw_value = x.get_raw_value(); let x = (math128::log2_64(raw_value).get_raw_value() as u256); fixed_point64::create_from_raw_value(((x * LN2) >> 64 as u128))}
pow
Integer power of a fixed point number
public fun pow(x: fixed_point64::FixedPoint64, n: u64): fixed_point64::FixedPoint64
Implementation
public fun pow(x: FixedPoint64, n: u64): FixedPoint64 { let raw_value = (x.get_raw_value() as u256); fixed_point64::create_from_raw_value((pow_raw(raw_value, (n as u128)) as u128))}
mul_div
Specialized function for x * y / z that omits intermediate shifting
public fun mul_div(x: fixed_point64::FixedPoint64, y: fixed_point64::FixedPoint64, z: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun mul_div(x: FixedPoint64, y: FixedPoint64, z: FixedPoint64): FixedPoint64 { let a = x.get_raw_value(); let b = y.get_raw_value(); let c = z.get_raw_value(); fixed_point64::create_from_raw_value (math128::mul_div(a, b, c))}
exp_raw
fun exp_raw(x: u256): u256
Implementation
fun exp_raw(x: u256): u256 { // exp(x / 2^64) = 2^(x / (2^64 * ln(2))) = 2^(floor(x / (2^64 * ln(2))) + frac(x / (2^64 * ln(2)))) let shift_long = x / LN2; assert!(shift_long <= 63, std::error::invalid_state(EOVERFLOW_EXP)); let shift = (shift_long as u8); let remainder = x % LN2; // At this point we want to calculate 2^(remainder / ln2) << shift // ln2 = 580 * 22045359733108027 let bigfactor = 22045359733108027; let exponent = remainder / bigfactor; let x = remainder % bigfactor; // 2^(remainder / ln2) = (2^(1/580))^exponent * exp(x / 2^64) let roottwo = 18468802611690918839; // fixed point representation of 2^(1/580) // 2^(1/580) = roottwo(1 - eps), so the number we seek is roottwo^exponent (1 - eps * exponent) let power = pow_raw(roottwo, (exponent as u128)); let eps_correction = 219071715585908898; power -= ((power * eps_correction * exponent) >> 128); // x is fixed point number smaller than bigfactor/2^64 < 0.0011 so we need only 5 tayler steps // to get the 15 digits of precission let taylor1 = (power * x) >> (64 - shift); let taylor2 = (taylor1 * x) >> 64; let taylor3 = (taylor2 * x) >> 64; let taylor4 = (taylor3 * x) >> 64; let taylor5 = (taylor4 * x) >> 64; let taylor6 = (taylor5 * x) >> 64; (power << shift) + taylor1 + taylor2 / 2 + taylor3 / 6 + taylor4 / 24 + taylor5 / 120 + taylor6 / 720}
pow_raw
fun pow_raw(x: u256, n: u128): u256
Implementation
fun pow_raw(x: u256, n: u128): u256 { let res: u256 = 1 << 64; while (n != 0) { if (n & 1 != 0) { res = (res * x) >> 64; }; n >>= 1; x = (x * x) >> 64; }; res}