Skip to content

math_fixed64 - [mainnet]

Standard math utilities missing in the Move Language.

use 0x1::error;
use 0x1::fixed_point64;
use 0x1::math128;

Constants

Abort code on overflow

const EOVERFLOW_EXP: u64 = 1;

Natural log 2 in 32 bit fixed point

const LN2: u256 = 12786308645202655660;

Functions

sqrt

Square root of fixed point number

public fun sqrt(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun sqrt(x: FixedPoint64): FixedPoint64 {
let y = x.get_raw_value();
let z = (math128::sqrt(y) << 32 as u256);
z = (z + ((y as u256) << 64) / z) >> 1;
fixed_point64::create_from_raw_value((z as u128))
}

exp

Exponent function with a precission of 9 digits.

public fun exp(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun exp(x: FixedPoint64): FixedPoint64 {
let raw_value = (x.get_raw_value() as u256);
fixed_point64::create_from_raw_value((exp_raw(raw_value) as u128))
}

log2_plus_64

Because log2 is negative for values < 1 we instead return log2(x) + 64 which is positive for all values of x.

public fun log2_plus_64(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun log2_plus_64(x: FixedPoint64): FixedPoint64 {
let raw_value = (x.get_raw_value());
math128::log2_64(raw_value)
}

ln_plus_32ln2

public fun ln_plus_32ln2(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun ln_plus_32ln2(x: FixedPoint64): FixedPoint64 {
let raw_value = x.get_raw_value();
let x = (math128::log2_64(raw_value).get_raw_value() as u256);
fixed_point64::create_from_raw_value(((x * LN2) >> 64 as u128))
}

pow

Integer power of a fixed point number

public fun pow(x: fixed_point64::FixedPoint64, n: u64): fixed_point64::FixedPoint64
Implementation
public fun pow(x: FixedPoint64, n: u64): FixedPoint64 {
let raw_value = (x.get_raw_value() as u256);
fixed_point64::create_from_raw_value((pow_raw(raw_value, (n as u128)) as u128))
}

mul_div

Specialized function for x * y / z that omits intermediate shifting

public fun mul_div(x: fixed_point64::FixedPoint64, y: fixed_point64::FixedPoint64, z: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun mul_div(x: FixedPoint64, y: FixedPoint64, z: FixedPoint64): FixedPoint64 {
let a = x.get_raw_value();
let b = y.get_raw_value();
let c = z.get_raw_value();
fixed_point64::create_from_raw_value (math128::mul_div(a, b, c))
}

exp_raw

fun exp_raw(x: u256): u256
Implementation
fun exp_raw(x: u256): u256 {
// exp(x / 2^64) = 2^(x / (2^64 * ln(2))) = 2^(floor(x / (2^64 * ln(2))) + frac(x / (2^64 * ln(2))))
let shift_long = x / LN2;
assert!(shift_long <= 63, std::error::invalid_state(EOVERFLOW_EXP));
let shift = (shift_long as u8);
let remainder = x % LN2;
// At this point we want to calculate 2^(remainder / ln2) << shift
// ln2 = 580 * 22045359733108027
let bigfactor = 22045359733108027;
let exponent = remainder / bigfactor;
let x = remainder % bigfactor;
// 2^(remainder / ln2) = (2^(1/580))^exponent * exp(x / 2^64)
let roottwo = 18468802611690918839; // fixed point representation of 2^(1/580)
// 2^(1/580) = roottwo(1 - eps), so the number we seek is roottwo^exponent (1 - eps * exponent)
let power = pow_raw(roottwo, (exponent as u128));
let eps_correction = 219071715585908898;
power -= ((power * eps_correction * exponent) >> 128);
// x is fixed point number smaller than bigfactor/2^64 < 0.0011 so we need only 5 tayler steps
// to get the 15 digits of precission
let taylor1 = (power * x) >> (64 - shift);
let taylor2 = (taylor1 * x) >> 64;
let taylor3 = (taylor2 * x) >> 64;
let taylor4 = (taylor3 * x) >> 64;
let taylor5 = (taylor4 * x) >> 64;
let taylor6 = (taylor5 * x) >> 64;
(power << shift) + taylor1 + taylor2 / 2 + taylor3 / 6 + taylor4 / 24 + taylor5 / 120 + taylor6 / 720
}

pow_raw

fun pow_raw(x: u256, n: u128): u256
Implementation
fun pow_raw(x: u256, n: u128): u256 {
let res: u256 = 1 << 64;
while (n != 0) {
if (n & 1 != 0) {
res = (res * x) >> 64;
};
n >>= 1;
x = (x * x) >> 64;
};
res
}