math_fixed64 - [mainnet]
Standard math utilities missing in the Move Language.
use 0x1::error;use 0x1::fixed_point64;use 0x1::math128;Constants
Abort code on overflow
const EOVERFLOW_EXP: u64 = 1;Natural log 2 in 32 bit fixed point
const LN2: u256 = 12786308645202655660;Functions
sqrt
Square root of fixed point number
public fun sqrt(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64Implementation
public fun sqrt(x: FixedPoint64): FixedPoint64 {    let y = x.get_raw_value();    let z = (math128::sqrt(y) << 32 as u256);    z = (z + ((y as u256) << 64) / z) >> 1;    fixed_point64::create_from_raw_value((z as u128))}exp
Exponent function with a precission of 9 digits.
public fun exp(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64Implementation
public fun exp(x: FixedPoint64): FixedPoint64 {    let raw_value = (x.get_raw_value() as u256);    fixed_point64::create_from_raw_value((exp_raw(raw_value) as u128))}log2_plus_64
Because log2 is negative for values < 1 we instead return log2(x) + 64 which is positive for all values of x.
public fun log2_plus_64(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64Implementation
public fun log2_plus_64(x: FixedPoint64): FixedPoint64 {    let raw_value = (x.get_raw_value());    math128::log2_64(raw_value)}ln_plus_32ln2
public fun ln_plus_32ln2(x: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64Implementation
public fun ln_plus_32ln2(x: FixedPoint64): FixedPoint64 {    let raw_value = x.get_raw_value();    let x = (math128::log2_64(raw_value).get_raw_value() as u256);    fixed_point64::create_from_raw_value(((x * LN2) >> 64 as u128))}pow
Integer power of a fixed point number
public fun pow(x: fixed_point64::FixedPoint64, n: u64): fixed_point64::FixedPoint64Implementation
public fun pow(x: FixedPoint64, n: u64): FixedPoint64 {    let raw_value = (x.get_raw_value() as u256);    fixed_point64::create_from_raw_value((pow_raw(raw_value, (n as u128)) as u128))}mul_div
Specialized function for x * y / z that omits intermediate shifting
public fun mul_div(x: fixed_point64::FixedPoint64, y: fixed_point64::FixedPoint64, z: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64Implementation
public fun mul_div(x: FixedPoint64, y: FixedPoint64, z: FixedPoint64): FixedPoint64 {    let a = x.get_raw_value();    let b = y.get_raw_value();    let c = z.get_raw_value();    fixed_point64::create_from_raw_value (math128::mul_div(a, b, c))}exp_raw
fun exp_raw(x: u256): u256Implementation
fun exp_raw(x: u256): u256 {    // exp(x / 2^64) = 2^(x / (2^64 * ln(2))) = 2^(floor(x / (2^64 * ln(2))) + frac(x / (2^64 * ln(2))))    let shift_long = x / LN2;    assert!(shift_long <= 63, std::error::invalid_state(EOVERFLOW_EXP));    let shift = (shift_long as u8);    let remainder = x % LN2;    // At this point we want to calculate 2^(remainder / ln2) << shift    // ln2 = 580 * 22045359733108027    let bigfactor = 22045359733108027;    let exponent = remainder / bigfactor;    let x = remainder % bigfactor;    // 2^(remainder / ln2) = (2^(1/580))^exponent * exp(x / 2^64)    let roottwo = 18468802611690918839;  // fixed point representation of 2^(1/580)    // 2^(1/580) = roottwo(1 - eps), so the number we seek is roottwo^exponent (1 - eps * exponent)    let power = pow_raw(roottwo, (exponent as u128));    let eps_correction = 219071715585908898;    power -= ((power * eps_correction * exponent) >> 128);    // x is fixed point number smaller than bigfactor/2^64 < 0.0011 so we need only 5 tayler steps    // to get the 15 digits of precission    let taylor1 = (power * x) >> (64 - shift);    let taylor2 = (taylor1 * x) >> 64;    let taylor3 = (taylor2 * x) >> 64;    let taylor4 = (taylor3 * x) >> 64;    let taylor5 = (taylor4 * x) >> 64;    let taylor6 = (taylor5 * x) >> 64;    (power << shift) + taylor1 + taylor2 / 2 + taylor3 / 6 + taylor4 / 24 + taylor5 / 120 + taylor6 / 720}pow_raw
fun pow_raw(x: u256, n: u128): u256Implementation
fun pow_raw(x: u256, n: u128): u256 {    let res: u256 = 1 << 64;    while (n != 0) {        if (n & 1 != 0) {            res = (res * x) >> 64;        };        n >>= 1;        x = (x * x) >> 64;    };    res}