math_fixed - [mainnet]
Standard math utilities missing in the Move Language.
use 0x1::error;use 0x1::fixed_point32;use 0x1::math128;
Constants
Abort code on overflow
const EOVERFLOW_EXP: u64 = 1;
Natural log 2 in 32 bit fixed point
const LN2: u128 = 2977044472;
const LN2_X_32: u64 = 95265423104;
Functions
sqrt
Square root of fixed point number
public fun sqrt(x: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32
Implementation
public fun sqrt(x: FixedPoint32): FixedPoint32 { let y = (x.get_raw_value() as u128); fixed_point32::create_from_raw_value((math128::sqrt(y << 32) as u64))}
exp
Exponent function with a precission of 9 digits.
public fun exp(x: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32
Implementation
public fun exp(x: FixedPoint32): FixedPoint32 { let raw_value = (x.get_raw_value() as u128); fixed_point32::create_from_raw_value((exp_raw(raw_value) as u64))}
log2_plus_32
Because log2 is negative for values < 1 we instead return log2(x) + 32 which is positive for all values of x.
public fun log2_plus_32(x: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32
Implementation
public fun log2_plus_32(x: FixedPoint32): FixedPoint32 { let raw_value = (x.get_raw_value() as u128); math128::log2(raw_value)}
ln_plus_32ln2
public fun ln_plus_32ln2(x: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32
Implementation
public fun ln_plus_32ln2(x: FixedPoint32): FixedPoint32 { let raw_value = (x.get_raw_value() as u128); let x = (math128::log2(raw_value).get_raw_value() as u128); fixed_point32::create_from_raw_value((x * LN2 >> 32 as u64))}
pow
Integer power of a fixed point number
public fun pow(x: fixed_point32::FixedPoint32, n: u64): fixed_point32::FixedPoint32
Implementation
public fun pow(x: FixedPoint32, n: u64): FixedPoint32 { let raw_value = (x.get_raw_value() as u128); fixed_point32::create_from_raw_value((pow_raw(raw_value, (n as u128)) as u64))}
mul_div
Specialized function for x * y / z that omits intermediate shifting
public fun mul_div(x: fixed_point32::FixedPoint32, y: fixed_point32::FixedPoint32, z: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32
Implementation
public fun mul_div(x: FixedPoint32, y: FixedPoint32, z: FixedPoint32): FixedPoint32 { let a = x.get_raw_value(); let b = y.get_raw_value(); let c = z.get_raw_value(); fixed_point32::create_from_raw_value (math64::mul_div(a, b, c))}
exp_raw
fun exp_raw(x: u128): u128
Implementation
fun exp_raw(x: u128): u128 { // exp(x / 2^32) = 2^(x / (2^32 * ln(2))) = 2^(floor(x / (2^32 * ln(2))) + frac(x / (2^32 * ln(2)))) let shift_long = x / LN2; assert!(shift_long <= 31, std::error::invalid_state(EOVERFLOW_EXP)); let shift = (shift_long as u8); let remainder = x % LN2; // At this point we want to calculate 2^(remainder / ln2) << shift // ln2 = 595528 * 4999 which means let bigfactor = 595528; let exponent = remainder / bigfactor; let x = remainder % bigfactor; // 2^(remainder / ln2) = (2^(1/4999))^exponent * exp(x / 2^32) let roottwo = 4295562865; // fixed point representation of 2^(1/4999) // This has an error of 5000 / 4 10^9 roughly 6 digits of precission let power = pow_raw(roottwo, exponent); let eps_correction = 1241009291; power += ((power * eps_correction * exponent) >> 64); // x is fixed point number smaller than 595528/2^32 < 0.00014 so we need only 2 tayler steps // to get the 6 digits of precission let taylor1 = (power * x) >> (32 - shift); let taylor2 = (taylor1 * x) >> 32; let taylor3 = (taylor2 * x) >> 32; (power << shift) + taylor1 + taylor2 / 2 + taylor3 / 6}
pow_raw
fun pow_raw(x: u128, n: u128): u128
Implementation
fun pow_raw(x: u128, n: u128): u128 { let res: u256 = 1 << 64; x <<= 32; while (n != 0) { if (n & 1 != 0) { res = (res * (x as u256)) >> 64; }; n >>= 1; x = ((((x as u256) * (x as u256)) >> 64) as u128); }; ((res >> 32) as u128)}