math_fixed - [mainnet]
Standard math utilities missing in the Move Language.
use 0x1::error;use 0x1::fixed_point32;use 0x1::math128;Constants
Abort code on overflow
const EOVERFLOW_EXP: u64 = 1;Natural log 2 in 32 bit fixed point
const LN2: u128 = 2977044472;const LN2_X_32: u64 = 95265423104;Functions
sqrt
Square root of fixed point number
public fun sqrt(x: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32Implementation
public fun sqrt(x: FixedPoint32): FixedPoint32 {    let y = (x.get_raw_value() as u128);    fixed_point32::create_from_raw_value((math128::sqrt(y << 32) as u64))}exp
Exponent function with a precission of 9 digits.
public fun exp(x: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32Implementation
public fun exp(x: FixedPoint32): FixedPoint32 {    let raw_value = (x.get_raw_value() as u128);    fixed_point32::create_from_raw_value((exp_raw(raw_value) as u64))}log2_plus_32
Because log2 is negative for values < 1 we instead return log2(x) + 32 which is positive for all values of x.
public fun log2_plus_32(x: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32Implementation
public fun log2_plus_32(x: FixedPoint32): FixedPoint32 {    let raw_value = (x.get_raw_value() as u128);    math128::log2(raw_value)}ln_plus_32ln2
public fun ln_plus_32ln2(x: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32Implementation
public fun ln_plus_32ln2(x: FixedPoint32): FixedPoint32 {    let raw_value = (x.get_raw_value() as u128);    let x = (math128::log2(raw_value).get_raw_value() as u128);    fixed_point32::create_from_raw_value((x * LN2 >> 32 as u64))}pow
Integer power of a fixed point number
public fun pow(x: fixed_point32::FixedPoint32, n: u64): fixed_point32::FixedPoint32Implementation
public fun pow(x: FixedPoint32, n: u64): FixedPoint32 {    let raw_value = (x.get_raw_value() as u128);    fixed_point32::create_from_raw_value((pow_raw(raw_value, (n as u128)) as u64))}mul_div
Specialized function for x * y / z that omits intermediate shifting
public fun mul_div(x: fixed_point32::FixedPoint32, y: fixed_point32::FixedPoint32, z: fixed_point32::FixedPoint32): fixed_point32::FixedPoint32Implementation
public fun mul_div(x: FixedPoint32, y: FixedPoint32, z: FixedPoint32): FixedPoint32 {    let a = x.get_raw_value();    let b = y.get_raw_value();    let c = z.get_raw_value();    fixed_point32::create_from_raw_value (math64::mul_div(a, b, c))}exp_raw
fun exp_raw(x: u128): u128Implementation
fun exp_raw(x: u128): u128 {    // exp(x / 2^32) = 2^(x / (2^32 * ln(2))) = 2^(floor(x / (2^32 * ln(2))) + frac(x / (2^32 * ln(2))))    let shift_long = x / LN2;    assert!(shift_long <= 31, std::error::invalid_state(EOVERFLOW_EXP));    let shift = (shift_long as u8);    let remainder = x % LN2;    // At this point we want to calculate 2^(remainder / ln2) << shift    // ln2 = 595528 * 4999 which means    let bigfactor = 595528;    let exponent = remainder / bigfactor;    let x = remainder % bigfactor;    // 2^(remainder / ln2) = (2^(1/4999))^exponent * exp(x / 2^32)    let roottwo = 4295562865;  // fixed point representation of 2^(1/4999)    // This has an error of 5000 / 4 10^9 roughly 6 digits of precission    let power = pow_raw(roottwo, exponent);    let eps_correction = 1241009291;    power += ((power * eps_correction * exponent) >> 64);    // x is fixed point number smaller than 595528/2^32 < 0.00014 so we need only 2 tayler steps    // to get the 6 digits of precission    let taylor1 = (power * x) >> (32 - shift);    let taylor2 = (taylor1 * x) >> 32;    let taylor3 = (taylor2 * x) >> 32;    (power << shift) + taylor1 + taylor2 / 2 + taylor3 / 6}pow_raw
fun pow_raw(x: u128, n: u128): u128Implementation
fun pow_raw(x: u128, n: u128): u128 {    let res: u256 = 1 << 64;    x <<= 32;    while (n != 0) {        if (n & 1 != 0) {            res = (res * (x as u256)) >> 64;        };        n >>= 1;        x = ((((x as u256) * (x as u256)) >> 64) as u128);    };    ((res >> 32) as u128)}