Skip to content

fixed_point64 - [mainnet]

Defines a fixed-point numeric type with a 64-bit integer part and a 64-bit fractional part.

Constants

const MAX_U128: u256 = 340282366920938463463374607431768211455;

The denominator provided was zero

const EDENOMINATOR: u64 = 65537;

The quotient value would be too large to be held in a u128

const EDIVISION: u64 = 131074;

A division by zero was encountered

const EDIVISION_BY_ZERO: u64 = 65540;

The multiplied value would be too large to be held in a u128

const EMULTIPLICATION: u64 = 131075;

The computed ratio when converting to a FixedPoint64 would be unrepresentable

const ERATIO_OUT_OF_RANGE: u64 = 131077;

Abort code on calculation result is negative.

const ENEGATIVE_RESULT: u64 = 65542;

Structs

FixedPoint64

Define a fixed-point numeric type with 64 fractional bits. This is just a u128 integer but it is wrapped in a struct to make a unique type. This is a binary representation, so decimal values may not be exactly representable, but it provides more than 9 decimal digits of precision both before and after the decimal point (18 digits total). For comparison, double precision floating-point has less than 16 decimal digits of precision, so be careful about using floating-point to convert these values to decimal.

struct FixedPoint64 has copy, drop, store
Fields
value: u128

Functions

sub

Returns self - y. self must be not less than y.

public fun sub(self: fixed_point64::FixedPoint64, y: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun sub(self: FixedPoint64, y: FixedPoint64): FixedPoint64 {
let x_raw = self.get_raw_value();
let y_raw = y.get_raw_value();
assert!(x_raw >= y_raw, ENEGATIVE_RESULT);
create_from_raw_value(x_raw - y_raw)
}

add

Returns self + y. The result cannot be greater than MAX_U128.

public fun add(self: fixed_point64::FixedPoint64, y: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun add(self: FixedPoint64, y: FixedPoint64): FixedPoint64 {
let x_raw = self.get_raw_value();
let y_raw = y.get_raw_value();
let result = (x_raw as u256) + (y_raw as u256);
assert!(result <= MAX_U128, ERATIO_OUT_OF_RANGE);
create_from_raw_value((result as u128))
}

multiply_u128

Multiply a u128 integer by a fixed-point number, truncating any fractional part of the product. This will abort if the product overflows.

public fun multiply_u128(val: u128, multiplier: fixed_point64::FixedPoint64): u128
Implementation
public fun multiply_u128(val: u128, multiplier: FixedPoint64): u128 {
// The product of two 128 bit values has 256 bits, so perform the
// multiplication with u256 types and keep the full 256 bit product
// to avoid losing accuracy.
let unscaled_product = (val as u256) * (multiplier.value as u256);
// The unscaled product has 64 fractional bits (from the multiplier)
// so rescale it by shifting away the low bits.
let product = unscaled_product >> 64;
// Check whether the value is too large.
assert!(product <= MAX_U128, EMULTIPLICATION);
(product as u128)
}

divide_u128

Divide a u128 integer by a fixed-point number, truncating any fractional part of the quotient. This will abort if the divisor is zero or if the quotient overflows.

public fun divide_u128(val: u128, divisor: fixed_point64::FixedPoint64): u128
Implementation
public fun divide_u128(val: u128, divisor: FixedPoint64): u128 {
// Check for division by zero.
assert!(divisor.value != 0, EDIVISION_BY_ZERO);
// First convert to 256 bits and then shift left to
// add 64 fractional zero bits to the dividend.
let scaled_value = (val as u256) << 64;
let quotient = scaled_value / (divisor.value as u256);
// Check whether the value is too large.
assert!(quotient <= MAX_U128, EDIVISION);
// the value may be too large, which will cause the cast to fail
// with an arithmetic error.
(quotient as u128)
}

create_from_rational

Create a fixed-point value from a rational number specified by its numerator and denominator. Calling this function should be preferred for using Self::create_from_raw_value which is also available. This will abort if the denominator is zero. It will also abort if the numerator is nonzero and the ratio is not in the range 2^-64 .. 2^64-1. When specifying decimal fractions, be careful about rounding errors: if you round to display N digits after the decimal point, you can use a denominator of 10^N to avoid numbers where the very small imprecision in the binary representation could change the rounding, e.g., 0.0125 will round down to 0.012 instead of up to 0.013.

public fun create_from_rational(numerator: u128, denominator: u128): fixed_point64::FixedPoint64
Implementation
public fun create_from_rational(numerator: u128, denominator: u128): FixedPoint64 {
// If the denominator is zero, this will abort.
// Scale the numerator to have 64 fractional bits, so that the quotient will have 64
// fractional bits.
let scaled_numerator = (numerator as u256) << 64;
assert!(denominator != 0, EDENOMINATOR);
let quotient = scaled_numerator / (denominator as u256);
assert!(quotient != 0 || numerator == 0, ERATIO_OUT_OF_RANGE);
// Return the quotient as a fixed-point number. We first need to check whether the cast
// can succeed.
assert!(quotient <= MAX_U128, ERATIO_OUT_OF_RANGE);
FixedPoint64 { value: (quotient as u128) }
}

create_from_raw_value

Create a fixedpoint value from a raw value.

public fun create_from_raw_value(value: u128): fixed_point64::FixedPoint64
Implementation
public fun create_from_raw_value(value: u128): FixedPoint64 {
FixedPoint64 { value }
}

get_raw_value

Accessor for the raw u128 value. Other less common operations, such as adding or subtracting FixedPoint64 values, can be done using the raw values directly.

public fun get_raw_value(self: fixed_point64::FixedPoint64): u128
Implementation
public fun get_raw_value(self: FixedPoint64): u128 {
self.value
}

is_zero

Returns true if the ratio is zero.

public fun is_zero(self: fixed_point64::FixedPoint64): bool
Implementation
public fun is_zero(self: FixedPoint64): bool {
self.value == 0
}

min

Returns the smaller of the two FixedPoint64 numbers.

public fun min(num1: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun min(num1: FixedPoint64, num2: FixedPoint64): FixedPoint64 {
if (num1.value < num2.value) {
num1
} else {
num2
}
}

max

Returns the larger of the two FixedPoint64 numbers.

public fun max(num1: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
Implementation
public fun max(num1: FixedPoint64, num2: FixedPoint64): FixedPoint64 {
if (num1.value > num2.value) {
num1
} else {
num2
}
}

less_or_equal

Returns true if self <= num2

public fun less_or_equal(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
Implementation
public fun less_or_equal(self: FixedPoint64, num2: FixedPoint64): bool {
self.value <= num2.value
}

less

Returns true if self < num2

public fun less(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
Implementation
public fun less(self: FixedPoint64, num2: FixedPoint64): bool {
self.value < num2.value
}

greater_or_equal

Returns true if self >= num2

public fun greater_or_equal(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
Implementation
public fun greater_or_equal(self: FixedPoint64, num2: FixedPoint64): bool {
self.value >= num2.value
}

greater

Returns true if self > num2

public fun greater(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
Implementation
public fun greater(self: FixedPoint64, num2: FixedPoint64): bool {
self.value > num2.value
}

equal

Returns true if self = num2

public fun equal(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
Implementation
public fun equal(self: FixedPoint64, num2: FixedPoint64): bool {
self.value == num2.value
}

almost_equal

Returns true if self almost equals to num2, which means abs(num1-num2) <= precision

public fun almost_equal(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64, precision: fixed_point64::FixedPoint64): bool
Implementation
public fun almost_equal(self: FixedPoint64, num2: FixedPoint64, precision: FixedPoint64): bool {
if (self.value > num2.value) {
(self.value - num2.value <= precision.value)
} else {
(num2.value - self.value <= precision.value)
}
}

create_from_u128

Create a fixedpoint value from a u128 value.

public fun create_from_u128(val: u128): fixed_point64::FixedPoint64
Implementation
public fun create_from_u128(val: u128): FixedPoint64 {
let value = (val as u256) << 64;
assert!(value <= MAX_U128, ERATIO_OUT_OF_RANGE);
FixedPoint64 {value: (value as u128)}
}

floor

Returns the largest integer less than or equal to a given number.

public fun floor(self: fixed_point64::FixedPoint64): u128
Implementation
public fun floor(self: FixedPoint64): u128 {
self.value >> 64
}

ceil

Rounds up the given FixedPoint64 to the next largest integer.

public fun ceil(self: fixed_point64::FixedPoint64): u128
Implementation
public fun ceil(self: FixedPoint64): u128 {
let floored_num = self.floor() << 64;
if (self.value == floored_num) {
return floored_num >> 64
};
let val = ((floored_num as u256) + (1 << 64));
(val >> 64 as u128)
}

round

Returns the value of a FixedPoint64 to the nearest integer.

public fun round(self: fixed_point64::FixedPoint64): u128
Implementation
public fun round(self: FixedPoint64): u128 {
let floored_num = self.floor() << 64;
let boundary = floored_num + ((1 << 64) / 2);
if (self.value < boundary) {
floored_num >> 64
} else {
self.ceil()
}
}

Specification

pragma aborts_if_is_strict;

sub

public fun sub(self: fixed_point64::FixedPoint64, y: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
pragma opaque;
aborts_if self.value < y.value with ENEGATIVE_RESULT;
ensures result.value == self.value - y.value;

add

public fun add(self: fixed_point64::FixedPoint64, y: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
pragma opaque;
aborts_if (self.value as u256) + (y.value as u256) > MAX_U128 with ERATIO_OUT_OF_RANGE;
ensures result.value == self.value + y.value;

multiply_u128

public fun multiply_u128(val: u128, multiplier: fixed_point64::FixedPoint64): u128
pragma opaque;
include MultiplyAbortsIf;
ensures result == spec_multiply_u128(val, multiplier);
schema MultiplyAbortsIf {
val: num;
multiplier: FixedPoint64;
aborts_if spec_multiply_u128(val, multiplier) > MAX_U128 with EMULTIPLICATION;
}
fun spec_multiply_u128(val: num, multiplier: FixedPoint64): num {
(val * multiplier.value) >> 64
}

divide_u128

public fun divide_u128(val: u128, divisor: fixed_point64::FixedPoint64): u128
pragma opaque;
include DivideAbortsIf;
ensures result == spec_divide_u128(val, divisor);
schema DivideAbortsIf {
val: num;
divisor: FixedPoint64;
aborts_if divisor.value == 0 with EDIVISION_BY_ZERO;
aborts_if spec_divide_u128(val, divisor) > MAX_U128 with EDIVISION;
}
fun spec_divide_u128(val: num, divisor: FixedPoint64): num {
(val << 64) / divisor.value
}

create_from_rational

public fun create_from_rational(numerator: u128, denominator: u128): fixed_point64::FixedPoint64
pragma opaque;
pragma verify_duration_estimate = 1000;
include CreateFromRationalAbortsIf;
ensures result == spec_create_from_rational(numerator, denominator);
schema CreateFromRationalAbortsIf {
numerator: u128;
denominator: u128;
let scaled_numerator = (numerator as u256)<< 64;
let scaled_denominator = (denominator as u256);
let quotient = scaled_numerator / scaled_denominator;
aborts_if scaled_denominator == 0 with EDENOMINATOR;
aborts_if quotient == 0 && scaled_numerator != 0 with ERATIO_OUT_OF_RANGE;
aborts_if quotient > MAX_U128 with ERATIO_OUT_OF_RANGE;
}
fun spec_create_from_rational(numerator: num, denominator: num): FixedPoint64 {
FixedPoint64{value: (numerator << 128) / (denominator << 64)}
}

create_from_raw_value

public fun create_from_raw_value(value: u128): fixed_point64::FixedPoint64
pragma opaque;
aborts_if false;
ensures result.value == value;

min

public fun min(num1: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
pragma opaque;
aborts_if false;
ensures result == spec_min(num1, num2);
fun spec_min(num1: FixedPoint64, num2: FixedPoint64): FixedPoint64 {
if (num1.value < num2.value) {
num1
} else {
num2
}
}

max

public fun max(num1: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): fixed_point64::FixedPoint64
pragma opaque;
aborts_if false;
ensures result == spec_max(num1, num2);
fun spec_max(num1: FixedPoint64, num2: FixedPoint64): FixedPoint64 {
if (num1.value > num2.value) {
num1
} else {
num2
}
}

less_or_equal

public fun less_or_equal(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
pragma opaque;
aborts_if false;
ensures result == spec_less_or_equal(self, num2);
fun spec_less_or_equal(self: FixedPoint64, num2: FixedPoint64): bool {
self.value <= num2.value
}

less

public fun less(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
pragma opaque;
aborts_if false;
ensures result == spec_less(self, num2);
fun spec_less(self: FixedPoint64, num2: FixedPoint64): bool {
self.value < num2.value
}

greater_or_equal

public fun greater_or_equal(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
pragma opaque;
aborts_if false;
ensures result == spec_greater_or_equal(self, num2);
fun spec_greater_or_equal(self: FixedPoint64, num2: FixedPoint64): bool {
self.value >= num2.value
}

greater

public fun greater(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
pragma opaque;
aborts_if false;
ensures result == spec_greater(self, num2);
fun spec_greater(self: FixedPoint64, num2: FixedPoint64): bool {
self.value > num2.value
}

equal

public fun equal(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64): bool
pragma opaque;
aborts_if false;
ensures result == spec_equal(self, num2);
fun spec_equal(self: FixedPoint64, num2: FixedPoint64): bool {
self.value == num2.value
}

almost_equal

public fun almost_equal(self: fixed_point64::FixedPoint64, num2: fixed_point64::FixedPoint64, precision: fixed_point64::FixedPoint64): bool
pragma opaque;
aborts_if false;
ensures result == spec_almost_equal(self, num2, precision);
fun spec_almost_equal(self: FixedPoint64, num2: FixedPoint64, precision: FixedPoint64): bool {
if (self.value > num2.value) {
(self.value - num2.value <= precision.value)
} else {
(num2.value - self.value <= precision.value)
}
}

create_from_u128

public fun create_from_u128(val: u128): fixed_point64::FixedPoint64
pragma opaque;
include CreateFromU64AbortsIf;
ensures result == spec_create_from_u128(val);
schema CreateFromU64AbortsIf {
val: num;
let scaled_value = (val as u256) << 64;
aborts_if scaled_value > MAX_U128;
}
fun spec_create_from_u128(val: num): FixedPoint64 {
FixedPoint64 {value: val << 64}
}

floor

public fun floor(self: fixed_point64::FixedPoint64): u128
pragma opaque;
aborts_if false;
ensures result == spec_floor(self);
fun spec_floor(self: FixedPoint64): u128 {
let fractional = self.value % (1 << 64);
if (fractional == 0) {
self.value >> 64
} else {
(self.value - fractional) >> 64
}
}

ceil

public fun ceil(self: fixed_point64::FixedPoint64): u128
pragma verify_duration_estimate = 1000;
pragma opaque;
aborts_if false;
ensures result == spec_ceil(self);
fun spec_ceil(self: FixedPoint64): u128 {
let fractional = self.value % (1 << 64);
let one = 1 << 64;
if (fractional == 0) {
self.value >> 64
} else {
(self.value - fractional + one) >> 64
}
}

round

public fun round(self: fixed_point64::FixedPoint64): u128
pragma opaque;
aborts_if false;
ensures result == spec_round(self);
fun spec_round(self: FixedPoint64): u128 {
let fractional = self.value % (1 << 64);
let boundary = (1 << 64) / 2;
let one = 1 << 64;
if (fractional < boundary) {
(self.value - fractional) >> 64
} else {
(self.value - fractional + one) >> 64
}
}