Skip to main content

Transactions and States

The two fundamental concepts at the heart of the Aptos blockchain are transactions and states:

  • Transactions: Transactions represent the exchange of data (e.g., Aptos Coins or NFTs) between accounts on the Aptos blockchain.
  • States: The state, i.e., the Aptos blockchain ledger state, represents the state of all the accounts in the Aptos blockchain.
Executing a transaction changes the ledger state

When a transaction is executed, the state of the Aptos blockchain changes.

Signed Transaction FlowSigned Transaction Flow

Ledger state

The Aptos blockchain's ledger state, or global state, represents the state of all accounts in the Aptos blockchain. Each validator node in the blockchain must know the latest version of the global state to execute any transaction.

Anyone can submit a transaction to the Aptos blockchain to modify the ledger state. Upon execution of a transaction, a transaction output is generated. A transaction output contains zero or more operations to manipulate the ledger state, called write sets: a vector of resulting events, the amount of gas consumed, and the executed transaction status.

Versioned database

The ledger state is versioned using an unsigned 64-bit integer corresponding to the number of transactions the system has executed. This versioned database allows the validator nodes to:

  • Execute a transaction against the ledger state at the latest version.
  • Respond to client queries about ledger history at both current and previous versions.

Transactions change ledger state

The above figure shows how executing transaction Ti changes the state of the Aptos blockchain from Si-1 to Si.

In the figure:

  • Accounts A and B: Represent Alice's and Bob's accounts on the Aptos blockchain.
  • Si-1 : Represents the (i-1)-th state of the blockchain. In this state, Alice's account A has a balance of 110 APT (Aptos coins), and Bob's account B has a balance of 52 APT.
  • Ti : This is the i-th transaction executed on the blockchain. In this example, it represents Alice sending 10 APT to Bob.
  • Apply(): This is a deterministic function that always returns the same final state for a specific initial state and a specific transaction. If the current state of the blockchain is Si-1, and transaction Ti is executed on the state Si-1, then the new state of the blockchain is always Si. The Aptos blockchain uses the Move language to implement the deterministic execution function Apply().
  • Si : This is the i-th state of the blockchain. When the transaction Ti is applied to the blockchain, it generates the new state Si (an outcome of applying Apply(Si-1, Ti) to Si-1 and Ti). This causes Alice’s account balance to be reduced by 10 to 100 APT and Bob’s account balance to be increased by 10 to 62 APT. The new state Si shows these updated balances.


When a client submits a transaction to the Aptos blockchain, then, if the transaction is successful the ledger state is updated.

A signed transaction on the blockchain contains the following information:

  • Signature: The sender uses a digital signature to verify that they signed the transaction (i.e., authentication).
  • Sender address: The sender's account address.
  • Sender public key: The public authentication key that corresponds to the private authentication key used to sign the transaction.
  • Program: The program comprises:
    • A Move module and function name or a move bytecode transaction script.
    • An optional list of inputs to the script. For a peer-to-peer transaction, these inputs contain the recipient's information and the amount transferred to them.
    • An optional list of Move bytecode modules to publish.
  • Gas price (in specified gas units): This is the amount the sender is willing to pay per unit of gas to execute the transaction. Gas is a way to pay for computation and storage. A gas unit is an abstract measurement of computation with no inherent real-world value.
  • Maximum gas amount: The maximum gas amount is the maximum gas units the transaction is allowed to consume.
  • Sequence number: This is an unsigned integer that must be equal to the sender's account sequence number at the time of execution.
  • Expiration time: A timestamp after which the transaction ceases to be valid (i.e., expires).


The Aptos blockchain uses proof to verify the authenticity and correctness of the blockchain data.

All data in the Aptos blockchain is stored in a single-version distributed database. Each validator and fullnode's storage is responsible for persisting the agreed upon blocks of transactions and their execution results to the database.

The blockchain is represented as an ever-growing Merkle tree, where each leaf appended to the tree represents a single transaction executed by the blockchain.

All operations executed by the blockchain and all account states can be verified cryptographically. These cryptographic proofs ensure that:

  • The validator nodes agree on the state.
  • The client does not need to trust the entity from which it is receiving data. For example, if a client fetches the last n transactions from an account, a proof can attest that no transactions were added, omitted or modified in the response. The client may also query for the state of an account, ask whether a specific transaction was processed, and so on.